Enclosure 2 to the NC PARS: Likelihood of Vessel Incident Comparison

Contents

Figures	.1
Tables	.1
Analysis Overview	.2
IWRAP Software and Model Overview	.2
Model Inputs	.4
Algorithm	.4
Geometric Frequency	
Causation Factor	
Outputs	
NC PARS Model Development	
Alpha Model	
Bravo Model	
Alpha and Bravo Models' Leg Configuration	
Results	
Results Breakdown and Discussion	
Appendix 1: Additional Model Images	
Appendix 2: Detailed Alpha and Bravo Case Results	
Alpha1	
Bravo	

Figures

Figure 1:	: Study Area Including Wind Areas	2
•	: NC PARS IWRAP Alpha and Bravo Leg Configuration	

Tables

Table 1: IWRAP Vessel Incident Types	4
Table 2: Alpha and Bravo Models' Legs	
Table 3: Alpha and Bravo Results	
Table 4: Alpha Overall Results	
Table 5: Bravo Overall Results	

Analysis Overview

This report shows calculated vessel incident frequencies for the NC PARS study area. This includes the North Carolina Wilmington East and West, and the South Carolina Grand Stand areas¹. The vessel incident frequencies were calculated using the IALA Waterways Risk Assessment Program (IWRAP) software. Figure 1 shows the relevant areas.

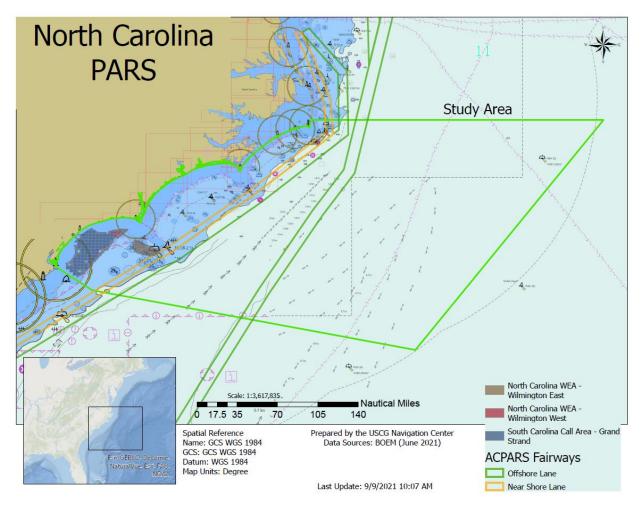


Figure 1: Study Area Including Wind Areas

IWRAP Software and Model Overview

IWRAP is a tool that predicts the frequency of vessel collisions, allisions, and groundings (vessel incidents) in a specified geographic area. IWRAP evaluates and estimates the annual number of allisions, collisions, and groundings in a modeled area using Automatic Identification System (AIS)-derived vessel traffic data. The specific breakdown and definitions of types of incidents that IWRAP evaluates are detailed in Table 1.

¹ Although these areas are not leased, they were evaluated in this report to capture the largest known area that may be leased in the future. The final areas are still under discussion by BOEM; the most up to date lease blocks are maintained by BOEM and can be viewed at: https://www.boem.gov/renewable-energy/mapping-and-data/renewable-energy-gis-data.

Incident Type	Definition		
Powered Grounding	Powered groundings occur when a vessel fails to maneuver to avoid shallow water or shoals and strikes the ocean floor while under power.		
Drifting Grounding	Drifting groundings occur when a vessel is no longer under the control of the mariner or has lost power and the vessel strikes the ocean floor.		
Powered Allision	Powered allisions occur when a vessel fails to maneuver to avoid a structure or stationary object and strikes that object. Such objects include bridges or wind turbines.		
Drifting Allision	Drifting allisions occur when a vessel is no longer under the control of the mariner or has lost power and strikes a structure or stationary object. Such objects include bridges or wind turbines.		
Overtaking Collision	Overtaking collisions take place when two vessels are on the same leg moving the same direction.		
Head-On Collision	Head on collisions take place when two vessels are on the same leg moving in reciprocal directions. Head-on		
Crossing Collision	Crossing collisions take place when two legs cross at a waypoint.		

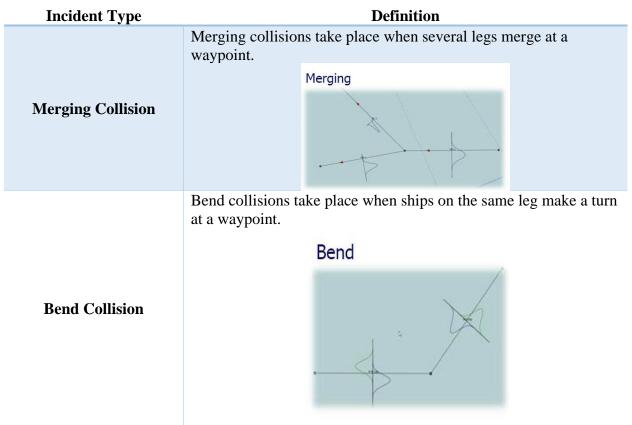


Table 1: IWRAP Vessel Incident Types

Model Inputs

Model inputs include the data required by IWRAP in order to calculate probabilities of vessel incidents. The inputs include AIS data, bathymetry, and structures.

AIS Data

For this analysis, the AIS data set is all AIS equipped vessel traffic in the study area in calendar year 2019. Figure 1 shows this area.

Bathymetry

Bathymetry comes from ENC data (encdirect.noaa.gov) and is uploaded directly into IWRAP.

Model Structures

Structures are modeled by creating a georeferenced representation of size and shape, and are uploaded directly to the software. The structures used in this analysis were created by NAVCEN in ArcGIS Pro, assuming fully developed wind areas, as monopile wind turbine generators with twelve-meter diameter bases. The turbines were spaced evenly in a one nautical mile grid pattern.

Algorithm

Given the model inputs, the fundamental calculation used by IWRAP is:

Incident Frequency = Geometric Frequency x Causation Factor

Geometric Frequency

Geometric Frequency is the number of incident candidates that exist in an AIS data set. After an AIS data set is uploaded, a color-coded line density plot is used to visually identify the most frequented routes. A network is then developed by an analyst who assigns legs connected by waypoints to the highest density routes based on a visual evaluation. IWRAP then assigns statistical distributions of vessel traffic to legs and waypoints based on the AIS data. The distributions are used to determine the total number of opportunities for a collision to take place.

Causation Factor

The Causation Factor is a thinning probability applied to the geometric incident candidates. In other words, the causation factor allows IWRAP to determine how many of the candidates for collisions, allision, or grounding actually had an incident occur. The causation factor accounts for the tendency of vessels to avoid other vessels, structures, and grounding. A set of universally applicable causation factors, based on Bayesian statistics and rooted in studies of past incidents, was developed by International Association of Marine Aids to Navigation and Lighthouse Authorities (IALA) in cooperation with the academic community. These values are the default for the IWRAP incident frequency calculations and were not modified from the default for this report.

Outputs

The resulting incident frequencies that are derived from the model are reported for each incident type described in Table 1 with the units years between incidents. These values represent the probabilities a certain type of incident will take place in any given year assuming the traffic makeup is similar to the sample year.

NC PARS Model Development

In this analysis two models were considered, referred to as Alpha and Bravo.

Alpha Model

The Alpha model is the baseline model in which no structures exist, and represents the probability that incidents will take place in the sample year. Since there are no structures in this model, allision frequencies do not exist.

Bravo Model

The Bravo model assumes that traffic does not alter patterns and adds in the fully developed wind areas. Bravo is the most congested scenario; Bravo shows the maximum allision frequencies the projects may present.

Alpha and Bravo Models' Leg Configuration

The network of legs for the model was developed in cooperation with CG District 5 Waterways based on the 2019 all vessels traffic density and includes 32 legs. The full model is shown in Figure 2 (additional larger scale screenshots are included in Appendix 1). Also in Figure 2, vessel traffic density for 2019 is represented on a yellow, orange, purple, and black scale. Yellow is the highest density areas and black the lowest density. The four colors represent quantiles with cutoffs at 99 (yellow), 95 (orange), 66 purple, and 0 (black) with a continuous gradient in

between. The proposed ACPARS fairways as well as the wind areas are also shown in this figure, to provide context. The black lines represent the numbered legs connected by waypoints. Each leg has two distributions assigned, representing the two directions of travel on that leg, which were extracted from the AIS data. The legs used in this model are tabulated in Table 2.

Leg	Description	inlet_3	cross through wind
coastwise_1		inlet_4	areas.
coastwise_2		inlet_5	
coastwise_3	Less for construint	inlet_6	
coastwise_4	Legs for coastwise traffic.	cross_1	
coastwise_5	uanic.	cross_2	
coastwise_6		cross_3	Legs that cross a wind
coastwise_7		cross_4	area.
TSS_1		cross_5	
TSS_2	T	cross_6	
TSS_split_1	Legs near or branching off the TSS	shore_1	
TSS_split_2	approaching Cape	shore_2	Legs near the shore in
TSS_split_3	Fear River.	shore_3	the study area.
TSS_split_4	i cui itivei.	shore_4	
TSS_split_5		exit_1	Other legs.
inlet_1	Legs near inlets.	connection_1	Other legs.
inlet_2	Some of these legs		

Table 2: Alpha and Bravo Models' Legs

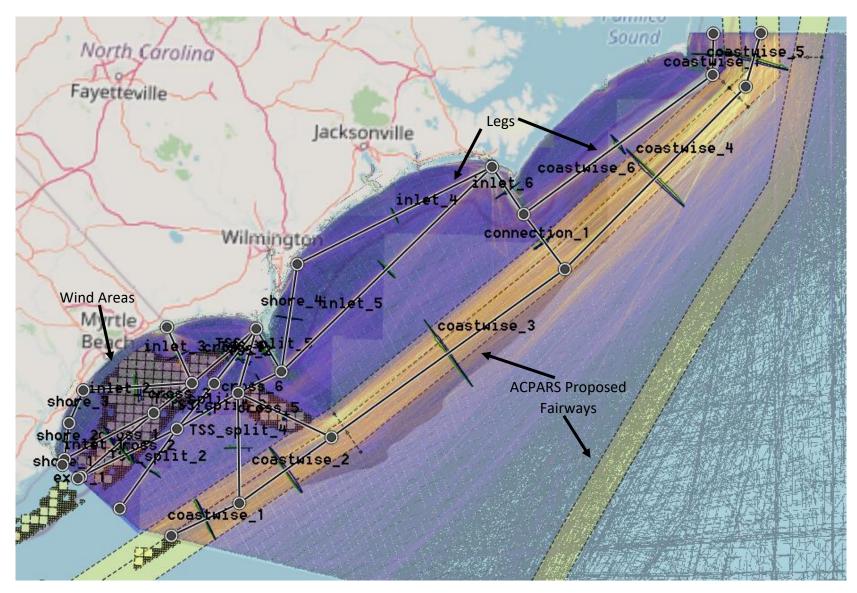
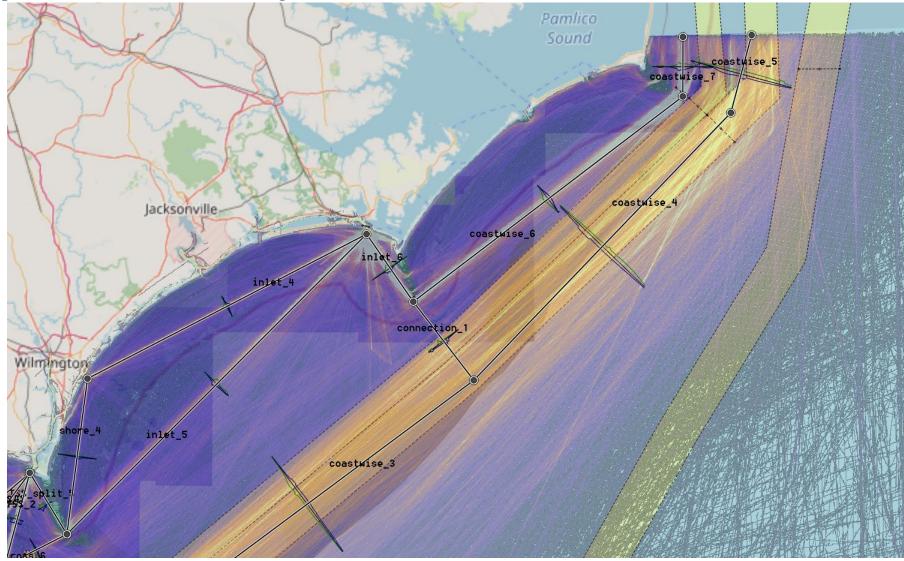


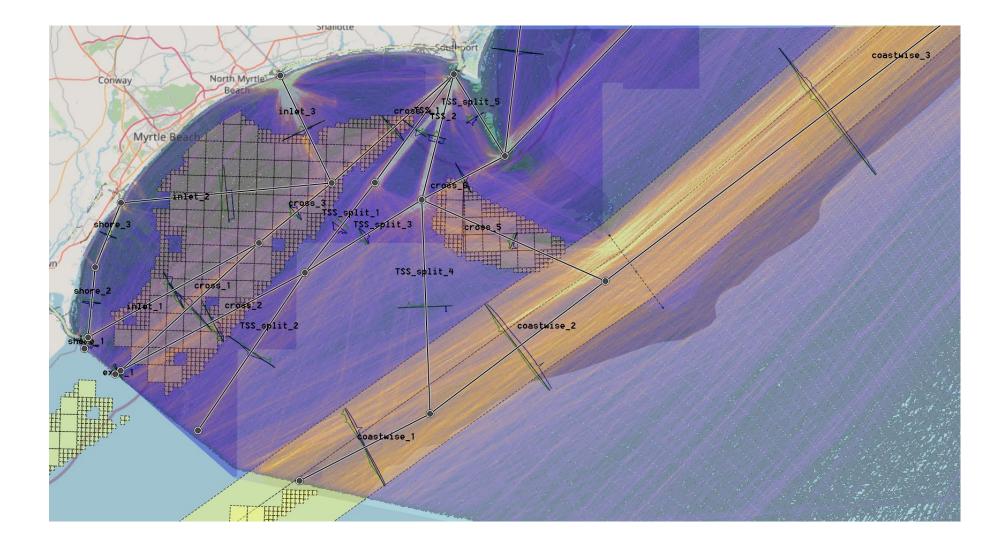
Figure 2: NC PARS IWRAP Alpha and Bravo Leg Configuration

Results

Table 3 shows the results of the Alpha and Bravo models and the percentage change between results (*New Model Value – Old Model Value*/_{Old Model Value} * 100). The units are years between incidents. Appendix 2 contains a detailed presentation of these data by model and individual leg.

	<u>Alpha</u>	<u>Bravo</u>	
	Years Between Incidents	Percent Change (From Alpha)	Years Between Incidents
Powered Grounding	5.02	0.040%	5.022
Drifting Grounding	49.61	0.020%	49.62
Total Groundings	4.559	0.044%	4.561
Powered Allision			104.7
Drifting Allision			2,937
Total Allisions			101.1
Overtaking	3,596	0%	3,596
Head On	1,892	0%	1,892
Crossing	1.19E+05	0%	1.19E+05
Merging	3.91E+05	0%	3.91E+05
Bend	8,604	0%	8,604
Total Collisions	1,071	0%	1,071


Table 3: Alpha and Bravo Results

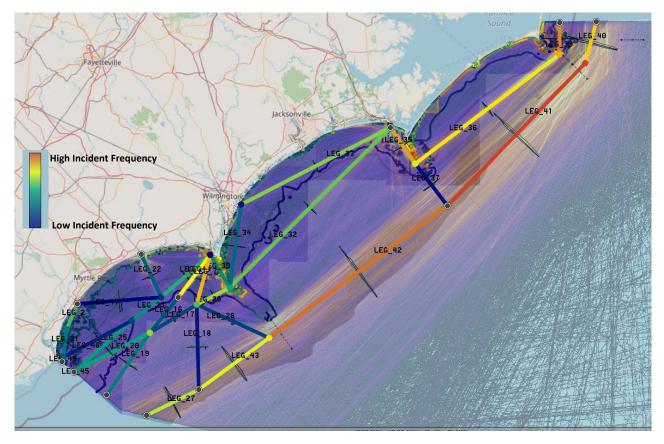

Results Breakdown and Discussion

The probabilities from the models provide a basis to compare the relative likelihood of vessel incidents in the study area in the present configuration (Alpha) as well as in some projected future configuration (Bravo). While Alpha shows no allisions since there are no structures in the model, Bravo does show allisions due to the addition of the WTGs. However, some vessels would likely route around the WEAs depending on their size. In this model, it is anticipated that cargo and tank ships would re-route from cross_5 to another area. These vessel types make up 91% of the total traffic on cross_5. The other legs that cut through wind areas do not have any or have very little cargo and tank ship traffic, and smaller vessels are presumed to continue to route through the WEA.

Any vessels that re-route around the WEA will reduce the number of candidates for allision. However, when vessels re-route to other areas, they transit in already congested spaces. More vessels would then be present on certain legs in the model, increasing overtaking and head on collisions. Thus, it is anticipated that actual allisions would be less and actual collisions be greater in a real-world scenario than are represented in the Bravo case.

Appendix 1: Additional Model Images

Appendix 2: Detailed Alpha and Bravo Case Results


For models Alpha and Bravo, overall results are shown followed by tables containing groundings and collisions by leg. Alpha and Bravo collisions are shown only under Alpha since the collision results are the same in each case. Bravo also contains allision results. All units are years between incidents.

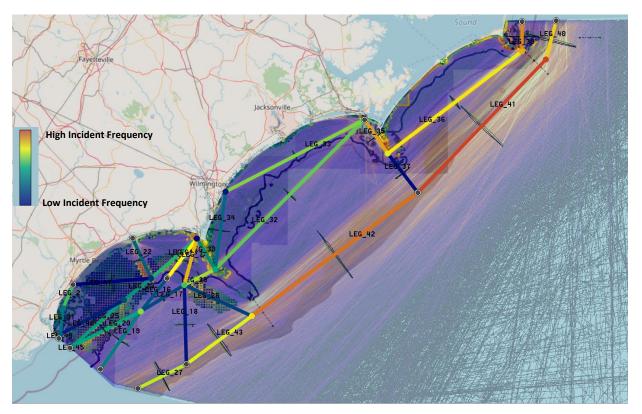
Alpha

The Alpha Case is the base case with current traffic based on 2019 data and no developed wind areas. No allisions are contained in the base case as there are no structures in the model.

Alpha Case – Overall Results (Years Between Incidents)			
Powered Grounding	5.02		
Drifting Grounding	49.61		
Total Groundings	4.559		
Powered Allision			
Drifting Allision			
Total Allisions			
Overtaking	3,596		
Head On	1,892		
Crossing	1.19E+05		
Merging	3.91E+05		
Bend	8,604		
Area			
Total Collisions	1,071		

Table 4: Alpha Overall Results

Alpha Case –	Groundings by Leg	g (Years Betw	een Incidents)
Leg	Powered	Drifting	Total
coastwise_1		1277589.1	1277589.1
coastwise_2	19449778.4	30470.4	30422.8
coastwise_3	8346.0	1638.7	1369.7
coastwise_4	50.6	193.8	40.1
coastwise_5	1055.7	6452.5	907.2
coastwise_6	297.8	1139.8	236.1
coastwise_7	1182.5	38393.6	1147.2
connection_1	139990.3	545795.6	111413.9
cross_1	1224523814189.5	70182.0	70182.0
cross_2		87081.6	87081.6
cross_3		7955819.7	7955819.7
cross_4	423.2	11353.0	408.0
cross_5		20982.5	20982.5
cross_6	4367.3	38897.8	3926.4
exit_1		26801195.3	26801195.3
inlet_1	5754.6	891122.5	5717.7
inlet_2		2973906.1	2973906.1
inlet_3	1033.8	10500.1	941.1
inlet_4	3733.7	36185.9	3384.5
inlet_5	762.3	7008.0	687.5
inlet_6	160.7	901.3	136.4
shore_1	1248.7	80059.0	1229.5
shore_2	255.8	9621.5	249.2
shore_3	110436.6	2146373.3	105032.4
shore_4	316.3	3409.4	289.4
TSS_1	21.0	227.3	19.2
TSS_2	9.4	152.9	8.8
TSS_split_1		65612.7	65612.7
TSS_split_2	32297878736.4	25316.7	25316.7
TSS_split_3		2106130.9	2106130.9
TSS_split_4		141958.5	141958.5
TSS_split_5	4825.3	3143.2	1903.4
Overall	5.0	49.6	4.6


Alpha and Bravo Cases – Collisions by Leg (Years Between Incidents)				
Leg	Head On	Overtaking		
coastwise_1	87527.2	482723.8		
coastwise_2	55840.8	227632.3		
coastwise_3	6743.7	28510.9		
coastwise_4	5018.2	6069.4		
coastwise_5	75118.3	282806.1		
coastwise_6	17183.8	92416.8		
coastwise_7	52606.1	217271.5		
connection_1	45448006.7	153746483.1		
cross_1	650861.4	2379371.2		
cross_2	561210.3	2190186.4		
cross_3	1511264.2	5798121.4		
cross_4	431161.3	2205434.4		
cross_5	2165910.7	4690012.5		
cross_6	553058.5	1682771.6		
exit_1	100348786.8	277390906.1		
inlet_1	5318024.9	33002607.1		
inlet_2	414948050.4	561962622.5		
inlet_3	2193414.8	3128068.6		
inlet_4	116857.2	753813.0		
inlet_5	100958.3	345872.1		
inlet_6	38547.8	174872.7		
shore_1	67820977.0	122140969.8		
shore_2	2732888.2	5987298.7		
shore_3	1346093.2	2232914.4		
shore_4	848575.9	2493469.9		
TSS_1	644115.1	71842.1		
TSS_2	470177.5	43087.6		
TSS_split_1	6212914.7	1717660.9		
TSS_split_2	2561992.1	900791.7		
TSS_split_3	2086319.7	7135776.0		
TSS_split_4	756072450703.1	20057330.8		
TSS_split_5	1705359.5	4701581.4		
Overall	1891.6	3595.7		

Bravo

The Bravo Case represents the fully developed scenario with no re-routing of vessel traffic around the wind farms. Allisions are expected to increase from zero. Collisions are expected to remain the same as the Alpha Case.

Bravo Case – Overall Results (Years			
Between Incidents)			
5.022			
49.62			
4.561			
104.7			
2,937			
101.1			
3,596			
1,892			
1.19E+05			
3.91E+05			
8,604			
1,071			

Table 5: Bravo Overall Results

Bravo Case –	Groundings by Leg	g (Years Betwe	en Incidents)
Leg	Powered	Drifting	Total
coastwise_1		1619446.453	1619446.453
coastwise_2	19811304.8	31466.4	31416.5
coastwise_3	8346.0	1642.3	1372.3
coastwise_4	50.6	193.8	40.1
coastwise_5	1055.7	6452.5	907.2
coastwise_6	297.8	1139.8	236.1
coastwise_7	1182.5	38393.6	1147.2
connection_1	139990.3	545795.6	111413.9
cross_1	1293254338168.3	70709.5	70709.5
cross_2		88478.2	88478.2
cross_3		8220996.2	8220996.2
cross_4	433.1	11358.7	417.2
cross_5		21179.7	21179.7
cross_6	4376.6	38904.9	3934.0
exit_1		27034759.1	27034759.1
inlet_1	6042.2	891375.5	6001.6
inlet_2		3000955.0	3000955.0
inlet_3	1037.8	10506.7	944.5
inlet_4	3733.7	36185.9	3384.5
inlet_5	762.3	7008.0	687.5
inlet_6	160.7	901.3	136.4
shore_1	1248.7	80059.0	1229.5
shore_2	255.8	9621.5	249.2
shore_3	110436.6	2147334.9	105034.7
shore_4	316.3	3409.4	289.4
TSS_1	21.0	227.4	19.2
TSS_2	9.4	152.9	8.8
TSS_split_1		67369.5	67369.5
TSS_split_2	32297878736.4	25935.0	25935.0
TSS_split_3		2153759.5	2153759.5
TSS_split_4		144144.9	144144.9
TSS_split_5	4825.3	3143.2	1903.4
Overall	5.0	49.6	4.6

Bravo Case -	– Allisions by I	Leg (Years Betw	een Incidents)
Leg	Powered	Drifting	Total
coastwise_1		3.5E+09	3.5E+09
coastwise_2	16979.8	1.1E+05	1.5E+04
coastwise_3		4.7E+04	4.7E+04
coastwise_4		6.6E+12	6.6E+12
coastwise_5		4.5E+13	4.5E+13
coastwise_6		3.6E+13	3.6E+13
coastwise_7		2.9E+13	2.9E+13
connection_1			
cross_1	405.8	1.5E+04	3.9E+02
cross_2	519.5	1.6E+04	5.0E+02
cross_3	910.9	5.1E+04	9.0E+02
cross_4	568.4	3.0E+04	5.6E+02
cross_5	2066.7	4.9E+04	2.0E+03
cross_6	2773.5	8.9E+04	2.7E+03
exit_1		4.5E+09	4.5E+09
inlet_1	1073.0	7.4E+04	1.1E+03
inlet_2	9372.9	2.1E+05	9.0E+03
inlet_3	2945.3	1.2E+05	2.9E+03
inlet_4		1.3E+06	1.3E+06
inlet_5		3.8E+05	3.8E+05
inlet_6		5.9E+06	5.9E+06
shore_1	1.3E+12	6.9E+09	6.9E+09
shore_2	1.4E+10	3.7E+05	3.7E+05
shore_3		3.2E+05	3.2E+05
shore_4	5.6E+12	7.3E+05	7.3E+05
TSS_1	1.1E+05	6.3E+04	4.0E+04
TSS_2		7.2E+04	7.2E+04
TSS_split_1	3623552.2	1.6E+05	1.5E+05
TSS_split_2	66987.0	9.7E+04	4.0E+04
TSS_split_3	187689484.3	1.3E+05	1.3E+05
TSS_split_4	27358711.7	8.8E+05	8.5E+05
TSS_split_5		8.2E+05	8.2E+05
Overall	104.7	2.9E+03	1.0E+02