U.S. GPS Policy and U.S. International Cooperation Activities

Civil GPS Service Interface Committee
U.S. States and Local Government Subcommittee
Groton, Connecticut
April 27, 2011

Maureen Walker
U.S. Department of State
National Space Based PNT Coordination Office
Overview

• U.S. Space-Based PNT Policy

• International Cooperation Activities
New U.S. National Space Policy

Space-Based PNT Guideline: Maintain leadership in the service, provision, and use of GNSS

• Provide civil GPS services, free of direct user charges
 – Available on a continuous, worldwide basis
 – Maintain constellation consistent with published performance standards and interface specifications
 – Foreign PNT services may be used to complement services from GPS

• Encourage global compatibility and interoperability with GPS

• Promote transparency in civil service provision

• Enable market access to industry

• Support international activities to detect and mitigate harmful interference
U.S. Space-Based PNT Organization Structure

WHITE HOUSE

NATIONAL EXECUTIVE COMMITTEE FOR SPACE-BASED PNT
Co-Chairs: Defense, Transportation

NATIONAL COORDINATION OFFICE
Host: Commerce

ADVISORY BOARD
Sponsor: NASA

Defense
Transportation
State
Interior
Agriculture
Commerce
Homeland Security
Joint Chiefs of Staff
NASA

GPS International Working Group
Chair: State

Engineering Forum
Co-Chairs: Defense, Transportation

Ad Hoc Working Groups
U.S. Policy Promotes Global Use of GPS Technology

- No direct user fees for civil GPS services
 - Provided on a continuous, worldwide basis
- Open, public signal structures for all civil services
 - Promotes equal access for user equipment manufacturing, applications development, and value-added services
 - Encourages open, market-driven competition
- Global compatibility and interoperability with GPS
- Service improvements for civil, commercial, and scientific users worldwide
- Protection of radionavigation spectrum from disruption and interference
U.S. Objectives in Working with Other GNSS Service Providers

- Ensure **compatibility** — ability of U.S. and non-U.S. space-based PNT services to be used separately or together without interfering with each individual service or signal
 - Radio frequency compatibility
 - Spectral separation between M-code and other signals

- Achieve **interoperability** — ability of civil U.S. and non-U.S. space-based PNT services to be used together to provide the user better capabilities than would be achieved by relying solely on one service or signal
 - Primary focus on the common L1C and L5 signals

Pursue through Bilateral and Multi-lateral Cooperation
<table>
<thead>
<tr>
<th>Block</th>
<th>Time Period</th>
<th>Satellites</th>
<th>Description</th>
</tr>
</thead>
</table>
| Block I | 1978 - 1985 | 11 (10) | Demonstration system
| | | | • L1 (CA) Navigation signal
| | | | • L1 & L2 (P Code) Navigation signal
| | | | • 5 Year Design Life
| Block II/IIA | 1989 - 1997 | 28 | Basic GPS Provides Initial Navigation Capabilities
| | | | • Standard Service
| | | | • Single Frequency (L1)
| | | | • C/A code navigation
| | | | • Precise Service
| | | | • Two frequencies (L1 & L2)
| | | | • P (Y) - Code navigation
| | | | • 7.5 Year Design Life
| Block IIR | 1997 - 2004 | 13 (12) | IIA/IIR Capabilities “Plus”
| | | | • 2nd Civil Signal L2 (L2C)
| | | | • Earth Coverage M-Code on L1/L2
| | | | • L5 Demo
| | | | • Anti-Jam Flex Power
| | | | • 7.5 Year Design Life
| Block IIR-M | 2005 - 2009 | 8 | IIR-M Capabilities “Plus”
| | | | • 3rd Civil Signal L5
| | | | • Reprogrammable Nav Processor
| | | | • Increased Accuracy requirement
| | | | • 12 Year Design Life
| Block IIF | 2010 - Present | 12 | IIIA
| | | | • Increased accuracy
| | | | • Increased Earth Coverage power
| | | | • 15 Year Design Life
| | | | • 4th Civil Signal (L1C)
| Block III | 2014 – 2024 | 32 | IIIB
| | | | • Real-time Communications
| | | | • IIIC
| | | | • Navigation Integrity
| | | | • Spot Beam for AJ

Increasing Space System Capabilities – Increasing Military/Civil User Benefits
Overview

• U.S. Space-Based PNT Policy
• International Cooperation Activities
Planned GNSS

• Global Constellations
 – **GPS (24+)**
 – GLONASS (30)
 – Galileo (27+3)
 – Compass (30 global and 5 regional satellites)
 – GINS - Global Indian Navigation System (24)

• Regional Constellations
 – QZSS (3)
 – IRNSS (7)

• Satellite-Based Augmentations
 – **WAAS (2+1)**
 – MSAS (2)
 – EGNOS (3)
 – GAGAN (2)
 – SDCM (2)
Bilateral Cooperation

- **U.S.-EU** GPS-Galileo Cooperation Agreement signed in June 2004
 - Four working groups set up under the Agreement

- **U.S.-Japan** Joint Statement on GPS Cooperation 1998
 - Quasi Zenith Satellite System (QZSS) designed to be fully compatible and highly interoperable with GPS
 - Bilateral agreements to set up QZSS monitoring stations in Hawaii and Guam

- **U.S.-Russia** Joint Statement issued December 2004
 - Working Groups: compatibility/interoperability, search/rescue
Bilateral Cooperation (continued)

• **U.S.-China** operator-to-operator coordination under ITU auspices is complete

• **U.S.-India** Joint Statement on GNSS Cooperation 2007
 – Technical Meetings focused on GPS-India Regional Navigation Satellite System (IRNSS) compatibility and interoperability held in 2008 and 2009
 – Continuation of ITU compatibility coordination is pending

• **U.S.-Australia** Joint Delegation Statement on Cooperation in the Civil Use of GPS in 2007
 – Bilateral meeting in Washington, D.C., Oct. 26-27, 2010
 – GNSS and applications to be included in expanded space cooperation, as discussed in an October 27 Joint Announcement
International Committee on Global Navigation Satellite Systems (ICG)

• Emerged from 3rd UN Conference on the Exploration and Peaceful Uses of Outer Space July 1999
 – Promote the **use of GNSS** and its **integration into infrastructures**, particularly in developing countries
 – Encourage **compatibility and interoperability** among global and regional systems
 – Met annually since 2006

• Members include:
 – **GNSS Providers** — China, EU, India, **Japan**, Russia, **United States**
 – Other interested Member States of the United Nations
 – International organizations/associations
APEC GNSS Implementation Team (GIT)

- Established in 2002

- Promote implementation of regional GNSS augmentation systems to enhance inter-modal transportation and recommend actions to be considered in the Asia Pacific Region

- Reports to Transportation Working Group (TPT-WG) through the Inter-modal Experts Group (IEG)

- Adopted a GNSS Strategy designed to promote adoption of GNSS technologies throughout the Asia Pacific region, especially with regard to transportation
Summary

• GPS performance is better than ever and will continue to improve
 – Augmentations enable even higher performance
 – New civil GPS signal available now
 – Many additional upgrades scheduled

• U.S. policy encourages worldwide use of civil GPS and augmentations

• International cooperation is a priority
 – Compatibility and interoperability very important
Contact Information

Maureen Walker
State Department Representative to the National PNT Coordination Office
pnt.gov
(202) 482-5809
GPS Modernization – New Civil Signals

Second civil signal “L2C”
- Designed to meet commercial needs
- Higher accuracy through ionospheric correction
- Available since 2005 without data message
 - Currently, 7 IIR-Ms transmitting L2C
- Full capability: 24 satellites ~2016

Third civil signal “L5”
- Designed to meet demanding requirements for transportation safety-of-life
- Uses highly protected Aeronautical Radio Navigation Service (ARNS) band
- On orbit broadcast 10 APR 2009 on IIR-20(M) secured ITU frequency filing
- Full capability: 24 satellites ~2018
GPS Modernization – Fourth Civil Signal (L1C)

- Designed with international partners for interoperability
- Modernized civil signal at L1 frequency
 - More robust navigation across a broad range of user applications
 - Improved performance in challenged tracking environments
 - Original signal retained for backward compatibility
- Specification developed in cooperation with industry recently completed
- Launches with GPS III in 2014
- On 24 satellites by ~2021
Modernized Operational Control Segment (OCX)

- **Architecture Evolution Plan (AEP)**
 - Transitioned in 2007
 - Increased worldwide commanding capability
 - Increased capacity for monitoring of GPS signals
 - Modern distributed system replaced 1970s mainframes
 - Current software version (5.5D) enabled SAASM functionality

- **Next Generation Control Segment (OCX)**
 - Controls more capable constellation, and monitors all GPS signals
 - $1.5B contract awarded 25 February 2010
 - Capability delivered incrementally to reduce risk
 - On track for Preliminary Design Review in ~April 2011
 - Full Capability by ~2016
Wide Area Augmentation System (WAAS) Architecture

- 38 Reference Stations
- 3 Master Stations
- 4 Ground Earth Stations
- 2 Geostationary Satellite Links
- 2 Operational Control Centers
WAAS Phased Upgrades

- **Phase I: IOC (July 2003) Completed**
 - Provided LNAV/VNAV/Limited LPV Capability

 - Improved LPV availability in CONUS and Alaska
 - Expanded WAAS coverage to Mexico and Canada

 - Software enhancements, hardware upgrades
 - Steady state operations and maintenance
 - Transition to FAA performed 2nd level engineering support
 - Begin GPS L5 transition activities

- **Phase IV: Dual Frequency (L1,L5) Operations (2013 – 2028)**
 - Complete GPS L5 transition
 - Will significantly improve availability and continuity during severe solar activity
 - Provide additional protection against GPS interference
 - Will continue to support single frequency users
Nationwide Differential GPS (NDGPS) is a National PNT Utility

- Operated/managed by U.S. Coast Guard as a Combined NDGPS (Maritime + Department of Transportation sites + ACOE sites)

- System Specifications
 - Corrections broadcast at 285 and 325 kHz using Minimum shift Keying (MSK) modulation
 - Real-time differential GPS corrections provided in Radio Technical Commission for Maritime Services (RTCM) SC-104 format
 - No data encryption
 - Real-time differential corrections for mobile and static applications

- Single coverage terrestrial over 92% of Continental United States (CONUS); double coverage over 65% of CONUS
Nationwide Differential GPS

- Expansion of maritime differential GPS (DGPS) network to cover terrestrial United States
- Built to international standard adopted in 50+ countries
Terrestrial NDGPS Capabilities and Uses

• Transportation operational requirements:
 – Federal Highway Administration (FHWA)
 – on behalf of state and local DOT stakeholders
 – routine use in Federal-Aid Program
 – survey, construction, quality, asset management
 – roadside management
 – law enforcement
 – Association of Am. Railroads
 – baseline reference
 – National Governor’s Association
 – use by state DOTs,
 – resource management agencies
National Continuously Operating Reference Stations (CORS)

- Enables highly accurate, 3-D positioning
 - Centimeter-level precision
 - Tied to National Spatial Reference System
- 1,200+ sites operated by 200+ public, private, academic organizations

- NOAA’s Online Positioning User Service (OPUS) automatically processes coordinates submitted via the web from around the world
- OPUS-RS (Rapid Static) declared operational in 2007
- NOAA considering support for real-time networks